A Convenient Synthesis of 2,3-Dihydro-4*H*-thiopyrano[2,3-*b*]-, -[2,3-*c*]-, or -[3,2-*c*]pyridin-4-ones by the Reaction of the Corresponding 1-(Chloropyridinyl)alk-2-en-1-ones with NaSH

by Kazuhiro Kobayashi* and Ayumi Imaoka

Division of Applied Chemistry, Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan (phone/fax: +81(857)315263; e-mail: kkoba@chem.tottori-u.ac.jp)

2,3-Dihydro-4*H*-thiopyrano[2,3-*b*]pyridin-4-ones **4** were prepared by a three-step sequence from commercially available 2-chloropyridine (**1**). Thus, successive treatment of **1** with ⁱPr₂NLi (LDA) and α,β -unsaturated aldehydes gave 1-(2-chloropyridin-3-yl)alk-2-en-1-ols **2**, which were oxidized with MnO₂ to 1-(2-chloropyridin-3-yl)alk-2-en-1-ones **3**. The reactions of **3** with NaSH \cdot *n* H₂O proceeded smoothly at 0° in DMF to provide the desired thiopyranopyridinones. Similarly, 2,3-dihydro-4H-thiopyrano[2,3-*c*]pyridin-4-ones **8** and 2,3-dihydro-4H-thiopyrano[3,2-*c*]pyridin-4-ones **12** were obtained starting from 3-chloropyridine (**5**) and 4-chloropyridine (**9**), respectively.

Introduction. – Recently, significant attention has been focused on 2,3-dihydro-4*H*-thiopyrano[2,3-*b*]pyridin-4-one derivatives, as some of them have been used for the synthesis of more complex fused heterocycles [1], and a number of derivatives with this skeleton have been reported to exhibit biological activities [2]. *Da Settimo et al.* have demonstrated that 2,3-dihydro-4*H*-thiopyrano[2,3-*b*]pyridin-4-one can be prepared from 2-sulfanylpyridine-3-carboxylic acid and 3-bromopropanoic acid [3]. A similar synthesis of 2,3-dihydro-4*H*-thiopyrano[3,2-*c*]pyridin-4-one using 4-sulfanylpyridine-3-carboxylic acid by *Gaillard et al.* [4]. However, there have been so far no reports on the general synthesis of these thiopyrano-pyridinone derivatives including 2,3-dihydro-4*H*-thiopyrano[2,3-*c*]pyridin-4-ones. Hence, we decided to develop a general method applicable to the preparation of these three thiopyranopyridinone derivatives starting with readily available compounds, and we report herein the results of our investigation, which provide facile entry to 2-substituted derivatives.

Results and Discussion. – The three-step preparation of 2,3-dihydro-4*H*-thiopyrano[2,3-*b*]pyridin-4-ones **4** was achieved according to the procedure outlined in *Scheme 1*. Commercially available 2-chloropyridine (**1**) was first lithiated with ${}^{1}\text{Pr}_{2}\text{NLi}$ (LDA) in THF at -78° as described by *Gribble* and *Saulnier* [5] to generate 2-chloro-3-lithiopyridine, which was then allowed to react with α,β -unsaturated aldehydes. The highly selective attack of the 2-chloropyridin-3-yl anion on the aldehyde in the 1,2addition fashion proceeded cleanly, and 1-(2-chloropyridin-3-yl)alk-2-en-1-ols **2** were obtained in relatively good yields as compiled in *Table 1*. Subsequently, these alcohols were oxidized with MnO₂ to give the corresponding 1-(2-chloropyridin-3-yl)alk-2-en-1-

© 2013 Verlag Helvetica Chimica Acta AG, Zürich

ones **3** in good-to-excellent yields. Finally, these ketones **3** were treated with NaSH $\cdot n$ H₂O in DMF at 0°. Substitution/ring-closing conjugate addition, or conjugate addition/ring closure *via* substitution proceeded smoothly even at this temperature, and TLC analyses confirmed that all starting materials had been consumed within 30 min. Usual aqueous workup, followed by column chromatography on SiO₂, provided good yields of 2-aryl-2,3-dihydro-4*H*-thiopyrano[2,3-*b*]pyridin-4-ones **4** (*Entries* 1-4), while the yields of the products derived from (*E*)-but-2-enal and 3-methylbut-2-enal, *i.e.* 2,3-dihydro-2-methyl-4*H*-thiopyrano[2,3-*b*]pyridin-4-one (**4e**) and 2,3-dihydro-2,2-dimeth-yl-4*H*-thiopyrano[2,3-*b*]pyridin-4-one (**4f**), were moderate (*Entries* 5 and 6, resp.). These results indicate that substitution of an aromatic group in β -position to the C=O group of **3** facilitates the cyclization. It should be noted that *trans*-2,3-dihydro-3-methyl-2-phenyl-4*H*-thiopyrano[2,3-*b*]pyridin-4-one (**4d**) was obtained almost exclusively; only a trace amount of its stereoisomer was detected by the ¹H-NMR spectrum of the crude product (*Entry* 4).

Table 1. Preparation of 2,3-Dihydro-4H-thiopyrano[2,3-b]pyridin-4-ones 4

Entry	$R^1R^2C=C(R^3)CHO$	2	Yield ^a)	3	Yield ^a)	4	Yield ^a)
1	$R^1 = Ph, R^2 = R^3 = H$	2a	77	3a	95	4a	80
2	$R^1 = 4$ -Cl- C_6H_4 , $R^2 = R^3 = H$	2b	71	3b	99	4b	78
3	$R^1 = 4$ -MeO-C ₆ H ₄ , $R^2 = R^3 = H$	2c	71	3c	88	4c	78
4	$R^1 = Ph, R^2 = H, R^3 = Me$	2d	74	3d	95	4d	75
5	$R^1 = Me, R^2 = R^3 = H$	2e	52	3e	73	4e	54
6	$R^1 = R^2 = Me, R^3 = H$	2f	73	3f	67	4f	55
^a) Yields	of isolated products [%].						

To elucidate the possible pathway for the formation of **4**, the reaction of (2chloropyridin-3-yl)(phenyl)methanone [6] with NaSH $\cdot n$ H₂O under the abovementioned conditions was carried out. It resulted in almost quantitative recovery of the starting materials. The substitution/ring-closing conjugate addition sequence may be excluded by this result, indicating that the conjugate addition/ring closure *via* substitution sequence is favored. Thus, conjugate addition of HS⁻ to the enone moiety of **3** is followed by intramolecular substitution of the resulting 3-(2-chlorophenyl)-3oxo-1-phenylpropane-1-thiolate to give **4**. The previous reports on the formation of 3ethylsulfanyl-1,3-diphenylpropan-1-one by the reaction of 1,3-diphenylprop-2-en-1one (chalcone) with EtSH in the presence of a base under mild conditions [7], and the formation of (2-ethylsulfanylpyridin-3-yl)phenylmethanone by the reaction of (2chloropyridin-3-yl)phenylmethanone with EtSNa under mild conditions [6b] may support the latter sequence.

2,3-Dihydro-4*H*-thiopyrano[2,3-*c*]pyridin-4-ones **8** were prepared from 3-chloropyridine (**5**) and α,β -unsaturated aldehydes, *via* 1-(3-chloropyridin-4-yl)alk-2-en-1-ols **6** and 1-(3-chloropyridin-4-yl)alk-2-en-1-ones **7**, by a procedure analogous to that applied for the preparation of **4**, as shown in *Scheme* 2. The precursors **6** and **7** were obtained in excellent yields. Unfortunately, however, the expected cyclization of **7** with NaSH $\cdot n$ H₂O proceeded less smoothly (*ca.* 1.5 h for complete consumption of the starting materials) and less cleanly than that of **3**, and resulted in the formation of rather complicated mixtures of products, from which the desired products **8** were isolated in much lower yields than those of products **4**. This may be rationalized by considering the lower reactivity of the 3-chloro- compared to the 2-chloropyridine ring. The use of 2 equiv. NaSH $\cdot n$ H₂O did not improve the yields.

By adapting the reaction conditions for the preparation of **4** and **8**, 2,3-dihydro-4*H*thiopyrano[3,2-*c*]pyridin-4-ones **12** were also prepared starting with 4-chloropyridine (**9**) as depicted in *Scheme 3*. A similarly good performance of 1-(4-chloropyridin-3yl)alk-2-en-1-ones **11**, obtained from the corresponding alcohols **10**, in the reaction with NaSH \cdot *n* H₂O was observed as described for the conversion of **3** into **4**, and relatively good yields of the desired products **12** were accomplished as compiled in *Table 2*, indicating that both yields of compounds **10** and **11** are good as well. Again noted is that *trans*-2,3-dihydro-3-methyl-2-phenyl-4*H*-thiopyrano[3,2-*c*]pyridin-4-one (**12d**) was also obtained as the practically sole stereoisomer as stated above.

In summary, the methodology described in this work allows very easy access to substituted 2,3-dihydro-4*H*-thiopyrano[2,3-b]-, -[2,3-c]-, or -[3,2-c]pyridin-4-ones, which are difficult to prepare by previous methods, from 2-, 3- or 4-chloropyridines,

626

Scheme 3

Table 2. Preparation of 2,3-Dihydro-4H-thiopyrano[3,2-c]pyridin-4-ones 12

Entry	$R^1R^2C=C(R^3)CHO$	10	Yield ^a)	11	Yield ^a)	12	Yield ^a)
1	$R^1 = Ph, R^2 = R^3 = H$	10a	77	11a	96	12a	78
2	$R^1 = 4$ -Cl-C ₆ H ₄ , $R^2 = R^3 = H$	10b	75	11b	91	12b	75
3	$R^1 = 4 - MeO - C_6H_4, R^2 = R^3 = H$	10c	79	11c	94	12c	78
4	$R^1 = Ph, R^2 = H, R^3 = Me$	10d	84	11d	99	12d	74
5	$R^1 = Me, R^2 = R^3 = H$	10e	71	11e	99	12e	52
6	$R^1 = R^2 = Me, R^3 = H$	10f	83	11f	91	12f	55

respectively. This method may also be of value in organic synthesis because of its simplicity as well as the ready availability of the starting materials.

Experimental Part

General. All of the org. solvents were dried over appropriate drying agents and distilled prior to use. BuLi was supplied by *Asia Lithium Corporation*. All chemicals were commercially available. TLC: *Merck* silica gel 60 *PF*₂₅₄. Column chromatography (CC): *Wako Gel C-200E*. M.p.: *Laboratory Devices MEL-TEMP II* apparatus; uncorrected. IR: *Perkin–Elmer Spectrum* 65 *FT-IR* spectrophotometer; $\tilde{\nu}$ in cm⁻¹. ¹H- and ¹³C-NMR: in CDCl₃ with Me₄Si as an internal reference, with *JEOL ECP500* FT NMR or *JEOL LA400* FT NMR spectrometer (at 500 or 400 MHz (¹H) and at 125 or 100 MHz (¹³C), resp.); δ in ppm, *J* in Hz. EI-MS (70 eV): with *JEOL JMS AX505 HA* spectrometer; *m/z* (rel. %).

(2E)-1-(2-Chloropyridin-3-yl)-3-phenylprop-2-en-1-ol (**2a**; Representative Procedure). To a stirred soln. of LDA (5.0 mmol), generated from ⁱPr₂NH and BuLi by the standard method, in THF (6 ml) at -78° was added 2-chloropyridine (**1**; 0.23 g, 2.0 mmol) dropwise [5]. After 1 h, (*E*)-3-phenylprop-2-enal (0.32 g, 2.4 mmol) was added, and stirring was continued for an additional 10 min before sat. aq. NH₄Cl (20 ml) was added. The mixture was warmed to r.t. and extracted with AcOEt (3×15 ml). The combined extracts were washed with brine (15 ml) and dried (Na₂SO₄). Evaporation of the solvent gave a residue, which was purified by CC (SiO₂) to give **2a** (0.38 g, 77%). Yellow oil. *R*_f (THF/hexane 1:5) 0.19. IR (neat): 3349, 1407. ¹H-NMR (500 MHz): 2.38 (*d*, *J* = 3.4, 1 H); 5.75 (*dd*, *J* = 6.3, 3.4, 1 H); 6.29 (*dd*, *J* = 16.0, 6.3, 1 H); 6.77 (*d*, *J* = 16.0, 1 H); 7.24–7.33 (*m*, 4 H); 7.39 (*d*, *J* = 7.4, 2 H); 8.01 (*dd*, *J* = 8.0, 1.7, 1 H); 8.33 (*dd*, *J* = 4.6, 1.7, 1 H). Anal. calc. for C₁₄H₁₂CINO (245.70): C 68.44, H 4.92, N 5.70; found: C 68.37, H 4.97, N 5.62.

(2E)-3-(4-Chlorophenyl)-1-(2-chloropyridin-3-yl)prop-2-en-1-ol (**2b**). Yellow oil. $R_{\rm f}$ (AcOEt/hexane 1:2) 0.19. IR (neat): 3317, 1407. ¹H-NMR (500 MHz): 2.32 (*s*, 1 H); 5.75 (*d*, *J* = 6.3, 1 H); 6.27 (*dd*, *J* = 16.0, 6.3, 1 H); 6,73 (*d*, *J* = 16.0, 1 H); 7.28 (*d*, *J* = 8.0, 2 H); 7.31 (*d*, *J* = 8.0, 2 H); 7.32 (*dd*, *J* = 7.4, 4.6, 1 H); 7.99 (*dd*, *J* = 7.4, 1.7, 1 H); 8.34 (*dd*, *J* = 4.6, 1.7, 1 H). Anal. calc. for C₁₄H₁₁Cl₂NO (280.15): C 60.02, H 3.96, N 5.00; found: C 59.98, H 4.05, N 4.97.

(2E)-1-(2-Chloropyridin-3-yl)-3-(4-methoxyphenyl)prop-2-en-1-ol (2c). Yellow oil. $R_{\rm f}$ (AcOEt/ hexane 1:2) 0.23. IR (neat): 3342, 1607, 1512, 1407. ¹H-NMR (500 MHz): 2.29 (*s*, 1 H); 3.80 (*s*, 3 H); 5.72 (*d*, J = 6.3, 1 H); 6.14 (*dd*, J = 15.7, 6.3, 1 H); 6.70 (*d*, J = 15.7, 1 H); 6.85 (*d*, J = 8.0, 2 H); 7.31–7.32 (*m*, 3 H); 8.00 (*dd*, J = 7.4, 1.7, 1 H); 8.32 (*dd*, J = 4.6, 1.7, 1 H). Anal. calc. for C₁₅H₁₄ClNO₂ (275.73): C 65.34, H 5.12, N 5.08; found: C 65.25, H 5.15, N 5.06.

(2E)-1-(2-Chloropyridin-3-yl)-2-methyl-3-phenylprop-2-en-1-ol (2d). Yellow oil. $R_{\rm f}$ (THF/hexane 1:5) 0.19. IR (neat): 3339, 1407. ¹H-NMR (400 MHz): 1.78 (d, J = 1.0, 3 H); 2.26 (d, J = 3.9, 1 H); 5.63 (d, J = 3.9, 1 H); 6.77 (s, 1 H); 7.22–7.36 (m, 6 H); 8.00 (dd, J = 7.3, 2.0, 1 H); 8.35 (dd, J = 4.9, 2.0, 1 H). Anal. calc. for C₁₅H₁₄ClNO (259.73): C 69.36, H 5.43, N 5.39; found: C 69.19, H 5.50, N 5.38.

(2E)-1-(2-Chloropyridin-3-yl)but-2-en-1-ol (**2e**). Yellow oil. $R_{\rm f}$ (AcOEt/hexane 1:3) 0.36. IR (neat): 3350, 1408. ¹H-NMR (500 MHz): 1.73 (d, J = 6.8, 3 H); 2.13 (d, J = 3.4, 1 H); 5.50–5.52 (m, 1 H); 5.60 (ddd, J = 14.9, 6.9, 1.7, 1 H); 5.85 (dq, J = 14.9, 6.9, 1 H); 7.28 (dd, J = 7.4, 4.6, 1 H); 7.94 (dd, J = 7.4, 1.7, 1 H); 8.30 (d, J = 4.6, 1.7, 1 H). Anal. calc. for C₉H₁₀ClNO (183.63): C 58.86, H 5.49, N 7.63; found: C 58.80, H 5.67, N 7.49.

1-(2-Chloropyridin-3-yl)-3-methylbut-2-en-1-ol (**2f**). Yellow oil. $R_{\rm f}$ (AcOEt/hexane 1:3) 0.37. IR (neat): 3350, 1673, 1406. ¹H-NMR (500 MHz): 1.76 (d, J = 1.1, 3 H); 1.88 (d, J = 1.7, 3 H); 1.98 (d, J = 2.9, 1 H); 5.20 (ddd, J = 9.2, 1.7, 1.1, 1 H); 5.73 (dd, J = 9.2, 2.9, 1 H); 7.28 (dd, J = 7.4, 4.6, 1 H); 7.99 (dd, J = 7.4, 1.7, 1 H); 8.29 (d, J = 4.6, 1.7, 1 H). Anal. calc. for C₁₀H₁₂CINO (197.66): C 60.76, H 6.12, N 7.09; found: C 60.64, H 6.20, N 7.05.

(2E)-1-(3-Chloropyridin-4-yl)-3-phenylprop-2-en-1-ol (**6a**). White solid. M.p. 106–108° (hexane/ Et₂O). IR (KBr): 3153, 1647, 1591. ¹H-NMR (500 MHz): 2.44 (d, J = 3.4, 1 H); 5.74 (dd, J = 6.3, 3.4, 1 H); 6.26 (dd, J = 16.0, 6.3, 1 H); 6.76 (d, J = 16.0, 1 H); 7.26 (td, J = 7.4, 1.1, 1 H); 7.31 (t, J = 7.4, 2 H); 7.38 (dd, J = 7.4, 1.1, 2 H); 7.61 (d, J = 4.6, 1 H); 8.52 (d, J = 4.6, 1 H); 8.54 (s, 1 H). Anal. calc. for C₁₄H₁₂ClNO (245.70): C 68.44, H 4.92, N 5.70; found: C 68.38, H 5.16, N 5.67.

(2E)-1-(3-Chloropyridin-4-yl)-3-(4-methoxyphenyl)prop-2-en-1-ol (**6b**). Yellow solid. M.p. 123–125° (dec.; hexane/Et₂O). IR (KBr): 3450, 1607. ¹H-NMR (500 MHz): 2.32 (br. *s*, 1 H); 3.80 (*s*, 3 H); 5.70 (*d*, J = 6.9, 1 H), 6.11 (*dd*, J = 16.0, 6.9, 1 H); 6.69 (*d*, J = 16.0, 1 H); 6.85 (*d*, J = 8.6, 2 H); 7.31 (*d*, J = 8.6, 2 H); 7.61 (*d*, J = 5.2, 1 H); 8.52 (*d*, J = 5.2, 1 H); 8.54 (*s*, 1 H). Anal. calc. for C₁₅H₁₄ClNO₂ (275.73): C 65.34, H 5.12, N 5.08; found: C 65.09, H 5.14, N 5.03.

(2E)-1-(3-Chloropyridin-4-yl)but-2-en-1-ol (**6c**). White solid. M.p. $57-59^{\circ}$ (hexane). IR (KBr): 3179, 1400. ¹H-NMR (500 MHz): 1.72 (d, J = 6.9, 3 H); 2.41 (s, 1 H); 5.50 (d, J = 6.9, 1 H); 5.57 (ddd, J = 14.7, 6.9, 1.1, 1 H); 5.85 (dq, J = 14.7, 6.9, 1 H); 7.54 (d, J = 4.6, 1 H); 8.48 (d, J = 4.6, 1 H); 8.50 (s, 1 H). Anal. calc. for C₉H₁₀CINO (183.63): C 58.86, H 5.49, N 7.63; found: C 58.69, H 5.61, N 7.52.

(2E)-1-(4-Chloropyridin-3-yl)-3-phenylprop-2-en-1-ol (**10a**). Yellow solid. M.p. 99–101° (hexane/Et₂O). IR (KBr): 3207, 1648, 1579. ¹H-NMR (500 MHz): 2.61 (d, J = 2.9, 1 H); 5.79 (dd, J = 6.3, 2.9, 1 H); 6.34 (dd, J = 16.0, 6.3, 1 H); 6.75 (d, J = 16.0, 1 H); 7.26 (t, J = 7.4, 2 H); 7.29–7.33 (m, 2 H); 7.38 (dd, J = 8.6, 1.7, 2 H); 8.43 (d, J = 5.2, 1 H); 8.83 (s, 1 H). Anal. calc. for C₁₄H₁₂ClNO (245.70): C 68.44, H 4.92, N 5.70; found: C 68.37, H 5.04, N 5.68.

 $(2E)-3-(4-Chlorophenyl)-1-(4-chloropyridin-3-yl)prop-2-en-1-ol (10b). Pale-yellow solid. M.p. 114-116^{\circ} (hexane/Et₂O). IR (KBr): 3390, 1652, 1579. ¹H-NMR (500 MHz): 2.52 ($ *d*,*J*= 3.4, 1 H); 5.80 (*dd*,*J*= 6.3, 3.4, 1 H); 6.32 (*dd*,*J*= 15.5, 6.3, 1 H); 6.71 (*d*,*J*= 15.5, 1 H); 7.28 (*d*,*J*= 8.6, 2 H); 7.30 (*d*,*J*= 5.7, 2 H); 7.31 (*d*,*J*= 8.6, 1 H); 8.44 (*d*,*J*= 5.7, 1 H); 8.82 (*s*, 1 H). Anal. calc. for C₁₄H₁₁Cl₂NO (280.15): C 60.02, H 3.96, N 5.00; found: C 59.87, H 3.76, N 5.97.

(2E)-1-(4-Chloropyridin-3-yl)-3-(4-methoxyphenyl)prop-2-en-1-ol (**10c**). Pale-yellow solid. M.p. 125–127° (hexane/Et₂O). IR (KBr): 3425, 1639, 1606. ¹H-NMR (500 MHz): 2.39 (*s*, 1 H); 3.80 (*s*, 3 H); 5.76 (*d*, J = 6.9, 1 H); 6.20 (*dd*, J = 16.0, 6.9, 1 H); 6.68 (*d*, J = 16.0, 1 H); 6.85 (*d*, J = 9.2, 2 H); 7.29 (*d*, J = 5.7, 1 H); 7.32 (*d*, J = 9.2, 2 H); 8.43 (*d*, J = 5.7, 1 H); 8.84 (*s*, 1 H). Anal. calc. for C₁₅H₁₄ClNO₂ (275.73): C 65.34, H 5.12, N 5.08; found: C 65.29, H 5.19, N 5.09.

(2E)-1-(4-Chloropyridin-3-yl)-2-methyl-3-phenylprop-2-en-1-ol (**10d**). Pale-yellow solid. M.p. 140–142° (hexane). IR (KBr): 3421, 1653, 1579. ¹H-NMR (500 MHz): 1.81 (d, J = 1.1, 3 H); 2.36 (d, J = 3.4, 1 H); 5.68 (d, J = 3.4, 1 H); 6.78 (s, 1 H); 7.22–7.36 (m, 6 H); 8.44 (d, J = 5.2, 1 H); 8.84 (s, 1 H). Anal. calc. for C₁₅H₁₄ClNO (259.73): C 69.36, H 5.43, N 5.39; found: C 69.30, H 5.69, N 5.32.

(2E)-1-(4-Chloropyridin-3-yl)but-2-en-1-ol (**10e**). Pale-yellow oil. R_f (AcOEt/hexane 1:1) 0.38. IR (neat): 3233, 1671, 1579. ¹H-NMR (500 MHz): 1.73 (*dd*, J = 6.9, 1.7, 3 H); 2.29 (*d*, J = 3.4, 1 H); 5.56 (br. *d*, J = 6.9, 1 H); 5.67 (*ddd*, J = 15.5, 6.9, 1.7, 1 H); 5.84 (*dq*, J = 15.6, 6.9, 1 H); 7.28 (*d*, J = 5.7, 1 H); 8.40 (*d*, J = 5.7, 1 H); 8.76 (*s*, 1 H). Anal. calc. for C₉H₁₀ClNO (183.63): C 58.86, H 5.49, N 7.63; found: C 58.63, H 5.33, N 7.41.

 $\begin{array}{l} 1-(4-Chloropyridin-3-yl)-3-methylbut-2-en-1-ol~(10f).~~ Yellow~oil.~~ R_{\rm f}~({\rm AcOEt/hexane}~1:2)~0.17.~{\rm IR}~({\rm neat}):~3330,~1673,~1579.~^{1}{\rm H-NMR}~(500~{\rm MHz}):~1.76~(s,~3~{\rm H});~1.85~(s,~3~{\rm H});~2.16~(d,~J=2.9,~1~{\rm H});~5.32~(d,~J=8.8,~1~{\rm H});~5.79~(dd,~J=8.8,~2.9,~1~{\rm H});~7.26~(d,~J=4.9,~1~{\rm H});~8.40~(d,~J=4.9,~1~{\rm H});~8.82~(s,~1~{\rm H}).~{\rm Anal.}~{\rm calc.~for}~C_{10}{\rm H_{12}ClNO}~(197.66):~{\rm C}~60.76,~{\rm H}~6.12,~{\rm N}~7.09;~{\rm found}:~{\rm C}~60.65,~{\rm H}~6.39,~{\rm N}~7.09. \end{array}$

(2E)-1-(2-Chloropyridin-3-yl)-3-phenylprop-2-en-1-one (**3a**; Representative Procedure). A soln. of **2a** (0.28 g, 1.1 mmol) in acetone (4 ml) containing MnO₂ (1.1 g, 13 mmol) was stirred for 30 min at r.t. The mixture was filtered, and the filtrate was concentrated by evaporation. The residue was purified by CC (SiO₂) to give **3a** (0.26 g, 95%). Pale-yellow oil. R_f (AcOEt/hexane 1:7) 0.13. IR (neat): 1651, 1617, 1397. ¹H-NMR (400 MHz): 7.18 (d, J = 15.6, 1 H); 7.37 – 7.50 (m, 4 H); 7.52 (d, 15.6, 1 H); 7.58 (dd, J = 7.8, 2.0, 2 H); 7.84 (dd, J = 7.8, 2.0, 1 H); 8.54 (dd, J = 4.9, 2.0, 1 H). Anal. calc. for C₁₄H₁₀CINO (243.69): C 69.00, H 4.14, N 5.75; found: C 69.01, H 4.15, N 5.65.

 $\begin{array}{l} (2\mathrm{E})\text{-}3\text{-}(4\text{-}Chlorophenyl)\text{-}1\text{-}(2\text{-}chloropyridin\text{-}3\text{-}yl)prop\text{-}2\text{-}en\text{-}1\text{-}one \quad \textbf{(3b)}. \ \, \text{Yellow solid. M.p. } 149\text{-} 151^{\circ} \ \, \text{(hexane)}. \ \, \text{IR (KBr): } 1668, 1603, 1390. \ ^{1}\text{H}\text{-}\text{NMR (500 MHz): } 7.15 \ \, (d, J = 16.0, 1 \ \, \text{H}); \ \, 7.38\text{-}7.41 \ \, (m, 3 \ \, \text{H}); \ \, 7.48 \ \, (d, 16.0, 1 \ \, \text{H}); \ \, 7.52 \ \, (d, J = 8.0, 2 \ \, \text{H}); \ \, 7.84 \ \, (dd, J = 7.4, 1.7, 1 \ \, \text{H}); \ \, 8.54 \ \, (dd, J = 4.7, 1.7, 1 \ \, \text{H}). \ \, \text{Anal. } \text{calc. for } \ \, C_{14}\text{H}_9\text{Cl}_2\text{NO (278.13): C } 60.46, \ \, \text{H } 3.26, \ \, \text{N } 5.04; \ \, \text{found: C } 60.28, \ \, \text{H } 3.50, \ \, \text{N } 4.96. \end{array}$

(2E)-1-(2-Chloropyridin-3-yl)-3-(4-methoxyphenyl)prop-2-en-1-one (**3c**). Yellow solid. M.p. 114–116° (hexane). IR (KBr): 1655, 1595, 1396. ¹H-NMR (500 MHz): 3.86 (*s*, 3 H); 6.93 (*d*, J = 9.2, 2 H); 7.04 (*d*, J = 16.0, 1 H); 7.37 (*dd*, J = 7.4, 5.2, 1 H); 7.45 (*d*, J = 16.0, 1 H); 7.54 (*d*, J = 9.2, 2 H); 7.82 (*dd*, J = 7.4, 5.2, 1 H); 7.45 (*d*, J = 16.0, 1 H); 7.54 (*d*, J = 9.2, 2 H); 7.82 (*dd*, J = 7.4, 1.7, 1 H); 8.52 (*dd*, J = 5.2, 1.7, 1 H). Anal. calc. for C₁₅H₁₂ClNO₂ (273.71): C 65.82, H 4.42, N 5.12; found: C 65.72, H 4.42, N 5.09.

(2E)-1-(2-Chloropyridin-3-yl)-2-methyl-3-phenylprop-2-en-1-one (**3d**). Pale-yellow solid. M.p. 120–122° (hexane). IR (KBr): 1646, 1619, 1396. ¹H-NMR (500 MHz): 2.27 (d, J = 1.1, 3 H); 7.09 (q, J = 1.1, 1 H); 7.35–7.43 (m, 6 H); 7.70 (dd, J = 7.4, 1.7, 1 H); 8.51 (dd, J = 5.1, 1.7, 1 H). Anal. calc. for C₁₅H₁₂ClNO₂ (257.71): C 69.91, H 4.69, N 5.43; found: C 69.66, H 4.70, N 5.46.

(2E)-*1*-(2-*Chloropyridin-3-yl)but-2-en-1-one* (**3e**). Pale-yellow oil. $R_{\rm f}$ (AcOEt/hexane 1:7) 0.23. IR (neat): 1660, 1622, 1397. ¹H-NMR (500 MHz): 1.99 (*dd*, *J* = 6.9, 1.7, 3 H); 6.53 (*dq*, *J* = 16.2, 1.7, 1 H); 6.78 (*dq*, *J* = 16.2, 6.9, 1 H); 7.33 (*dd*, *J* = 7.4, 5.2, 1 H); 7.71 (*dd*, *J* = 7.4, 1.7, 1 H); 8.49 (*dd*, *J* = 5.2, 1.7, 1 H). Anal. calc. for C₉H₈CINO (181.62): C 59.52, H 4.44, N 7.71; found: C 59.48, H 4.48, N 7.47.

1-(2-Chloropyridin-3-yl)-3-methylbut-2-en-1-one (**3f**). Pale-yellow oil. $R_{\rm f}$ (AcOEt/hexane 1:3) 0.39. IR (neat): 1671, 1609, 1396. ¹H-NMR (400 MHz): 2.02 (d, J = 1.0, 3 H); 2.27 (s, 3 H); 6.48 (q, J = 1.0, 1 H); 7.32 (dd, J = 7.3, 4.9, 1 H); 7.79 (dd, J = 7.3, 2.0, 1 H); 8.46 (dd, J = 4.9, 2.0, 1 H). Anal. calc. for $C_{10}H_{10}$ CINO (195.65): C 61.39, H 5.15, N 7.16; found: C 61.20, H 5.06, N 7.07.

(2E)-*1*-(*3*-Chloropyridin-4-yl)-*3*-phenylprop-2-en-*1*-one (**7a**). Pale-yellow solid. M.p. 96–98° (hexane). IR (KBr) 1651, 1619. ¹H-NMR (500 MHz): 7.07 (d, J = 16.0, 1 H); 7.35 (d, J = 4.6, 1 H); 7.41–7.46 (m, 4 H); 7.57 (dd, J = 7.4, 1.7, 2 H); 8.63 (d, J = 4.6, 1 H); 8.72 (s, 1 H). Anal. calc. for C₁₄H₁₀ClNO (243.69): C 69.00, H 4.14, N 5.75; found: C 68.90, H 4.23, N 5.53.

(2E)-1-(3-Chloropyridin-4-yl)-3-(4-methoxyphenyl)prop-2-en-1-one~(7b). Yellow solid. M.p. 109-111° (hexane). IR (KBr): 1634, 1623, 1603. ¹H-NMR (400 MHz): 3.86 (s, 3 H); 6.93 (d, J=8.8, 2 H); 6.94 (d, J=16.6, 1 H); 7.34 (d, J=4.9, 1 H); 7.37 (d, J=16.6, 1 H); 7.53 (d, J=8.8, 2 H); 8.62 (d, J=4.9, 1 H); 8.71 (s, 1 H). Anal. calc. for C₁₅H₁₂ClNO₂ (273.71): C 65.82, H 4.42, N 5.12; found: C 65.71, H 4.51, N 4.92.

(2E)-1-(3-Chloropyridin-4-yl)but-2-en-1-one (**7c**). Pale-yellow oil. $R_{\rm f}$ (AcOEt/hexane 1:3) 0.30. IR (neat): 1663, 1638, 1622. ¹H-NMR (500 MHz): 2.00 (*dd*, J = 6.9, 1.1, 3 H); 6.45 (*dd*, J = 15.5, 1.1, 1 H);

6.72 (dq, J = 15.5, 6.9, 1 H); 7.23 (d, J = 5.2, 1 H); 8.57 (d, J = 5.2, 1 H); 8.67 (s, 1 H). Anal. calc. for C₉H₈CINO (181.62): C 59.52, H 4.44, N 7.71; found: C 59.43, H 4.49, N 7.60.

(2E)-1-(4-Chloropyridin-3-yl)-3-phenylprop-2-en-1-one (**11a**). This compound was rather unstable, so it had to be used in the next step as soon as possible after isolation. Pale-yellow oil. $R_{\rm f}$ (AcOEt/hexane 1:3) 0.40. IR (neat): 1642, 1620. ¹H-NMR (500 MHz): 7.15 (d, J = 16.0, 1 H); 7.42 – 7.45 (m, 4 H); 7.50 (d, J = 16.0, 1 H); 7.59 (dd, J = 8.0, 1.7, 2 H); 8.62 (d, J = 5.2, 1 H); 8.71 (s, 1 H).

(2E)-3-(4-Chlorophenyl)-1-(4-chloropyridin-3-yl)prop-2-en-1-one (**11b**). White solid. M.p. 114–116° (dec.; hexane/Et₂O). IR (KBr): 1670, 1630, 1605. ¹H-NMR (500 MHz): 7.13 (d, J=16.0, 1 H); 7.40 (d, J=8.6, 2 H); 7.44 (d, J=5.2, 1 H); 7.48 (d, J=16.0, 1 H); 7.52 (d, J=8.6, 2 H); 8.62 (d, J=5.2, 1 H); 8.70 (s, 1 H). Anal. calc. for C₁₄H₉Cl₂NO (278.13): C 60.46, H 3.26, N 5.04; found: C 60.36, H 3.20, N 4.87.

(2E)-1-(4-Chloropyridin-3-yl)-3-(4-methoxyphenyl)prop-2-en-1-one (**11c**). Pale-yellow solid. M.p. 114–116° (hexane). IR (KBr): 1655, 1594. ¹H-NMR (500 MHz): 3.86 (s, 3 H); 6.94 (d, J = 9.2, 2 H); 7.02 (d, J = 15.5, 1 H); 7.43 (d, J = 5.2, 1 H); 7.45 (d, J = 15.5, 1 H); 7.54 (d, J = 9.2, 2 H); 8.60 (d, J = 5.2, 1 H); 8.68 (s, 1 H). Anal. calc. for C₁₅H₁₂ClNO₂ (273.71): C 65.82, H 4.42, N 5.12; found: C 65.71, H 4.28, N 5.01.

(2E)-1-(4-Chloropyridin-3-yl)-2-methyl-3-phenylprop-2-en-1-one (**11d**). Pale-yellow oil. R_t (AcOEt/ hexane 1:3) 0.33. IR (neat): 1658, 1619. ¹H-NMR (500 MHz): 2.27 (d, J = 1.1, 3 H); 7.11 (q, J = 1.1, 1 H); 7.35 – 7.43 (m, 6 H); 8.57 (s, 1 H); 8.60 (d, J = 5.2, 1 H). Anal. calc. for C₁₅H₁₂ClNO (257.71): C 69.91, H 4.69, N 5.43; found: C 69.85, H 4.72, N 5.31.

(2E)-1-(4-Chloropyridin-3-yl)but-2-en-1-one (**11e**). Pale-yellow oil. $R_{\rm f}$ (AcOEt/hexane 1:2) 0.38. IR (neat): 1659, 1622. ¹H-NMR (500 MHz): 2.00 (*dd*, J = 6.9, 1.1, 3 H); 6.53 (*dq*, J = 15.5, 1.1, 1 H); 6.78 (*dq*, J = 15.5, 6.9, 1 H); 7.39 (*d*, J = 5.2, 1 H); 8.57 (*d*, J = 5.2, 1 H); 8.58 (*s*, 1 H). Anal. calc. for C₉H₈ClNO (181.62): C 59.52, H 4.44, N 7.71; found: C 59.42, H 4.50, N 7.67.

1-(4-Chloropyridin-3-yl)-3-methylbut-2-en-1-one (**11f**). Pale-yellow oil. $R_{\rm f}$ (AcOEt/hexane 1:1) 0.40. IR (neat): 1669, 1610. ¹H-NMR (500 MHz): 2.03 (*s*, 3 H); 2.28 (*s*, 3 H); 6.47 (*s*, 1 H); 7.36 (*d*, *J* = 5.2, 1 H); 8.54 (*d*, *J* = 5.2, 1 H); 8.67 (*s*, 1 H). Anal. calc. for C₁₀H₁₀CINO (195.65): C 61.39, H 5.15, N 7.16; found: C 61.26, H 5.17, N 7.07.

2,3-Dihydro-2-phenyl-4H-thiopyrano[2,3-b]pyridin-4-one (**4a**; Representative Procedure). A mixture of **3a** (0.17 g, 0.70 mmol) in DMF (3 ml) containing NaSH \cdot n H₂O (70% as NaSH; 62 mg, 0.77 mmol) was stirred at 0° until disappearance of the starting material had been confirmed by TLC analyses (SiO₂; within 30 min, *ca.* 1.5 h for **8**). Sat. aq. NH₄Cl (10 ml) was added, and the mixture was extracted with AcOEt (3 × 10 ml). The combined extracts were washed with brine (10 ml), dried (Na₂SO₄), and concentrated by evaporation. The residue was purified by CC (SiO₂) to give **4a** (0.13 g, 80%). Yellow oil. $R_{\rm f}$ (THF/hexane 1:5) 0.43. IR (neat): 1684, 1396. ¹H-NMR (500 MHz): 3.23 (*dd*, *J* = 16.0, 2.9, 1 H); 3.35 (*dd*, *J* = 16.0, 12.6, 1 H); 4.78 (*dd*, *J* = 12.6, 2.9, 1 H); 7.17 (*dd*, *J* = 7.4, 4.6, 1 H); 7.34 – 7.46 (*m*, 5 H); 8.35 (*dd*, *J* = 7.4, 1.7, 1 H); 8.58 (*dd*, *J* = 4.6, 1.7, 1 H). ¹³C-NMR (100 MHz): 44.07; 45.77; 120.22; 126.88; 127.45; 128.61; 129.10; 136.55; 137.77; 153.88; 164.06; 193.95. EI-MS: 241 (100, *M*⁺). Anal. calc. for C₁₄H₁₁NOS (241.31): C 69.68, H 4.59, N 5.80; found: C 69.62, H 4.54, N 5.71.

2-(4-Chlorophenyl)-2,3-dihydro-4H-thiopyrano[2,3-b]pyridin-4-one (**4b**). Yellow solid. M.p. 108 – 110° (hexane). IR (KBr): 1683, 1396. ¹H-NMR (500 MHz): 3.21 (dd, J = 16.0, 2.9, 1 H); 3.30 (dd, J = 16.0, 12.6, 1 H); 4.75 (dd, J = 12.6, 2.9, 1 H); 7.17 (dd, J = 8.0, 4.6, 1 H); 7.37 (d, J = 9.2, 2 H); 7.38 (d, J = 9.2, 2 H); 8.34 (dd, J = 8.0, 2.3, 1 H); 8.58 (dd, J = 4.6, 2.3, 1 H). ¹³C-NMR (100 MHz): 43.33; 45.59; 120.40; 126.85; 128.82; 129.31; 134.50; 136.26; 136.61; 153.96; 163.60; 193.56. EI-MS: 275 (100, M^+). Anal. calc. for C₁₄H₁₀CINOS (275.75): C 60.98, H 3.66, N 5.08; found: C 60.73, H 3.62, N 5.14.

2,3-Dihydro-2-(4-methoxyphenyl)-4H-thiopyrano[2,3-b]pyridin-4-one (**4c**). Yellow solid. M.p. 104–106° (hexane/Et₂O). IR (KBr): 1683, 1395. ¹H-NMR (500 MHz): 3.20 (*dd*, J = 16.0, 2.9, 1 H); 3.31 (*dd*, J = 16.0, 13.2, 1 H); 3.82 (s, 3 H); 4.73 (*dd*, J = 13.2, 2.9, 1 H); 6.92 (d, J = 9.2, 2 H); 7.15 (*dd*, J = 8.0, 5.2, 1 H); 7.36 (d, J = 9.2, 2 H); 8.33 (*dd*, J = 8.0, 2.3, 1 H); 8.57 (*dd*, J = 5.2, 2.3, 1 H). ¹³C-NMR (100 MHz): 43.50; 45.99; 55.30; 114.42; 120.15; 128.64; 129.66; 136.54; 136.57; 153.86; 159.68; 164.20; 194.18. EI-MS: 271 (100, M^+). Anal. calc. for C₁₅H₁₃NO₂S (271.33): C 66.40, H 4.83, N 5.16; found: C 66.34, H 4.85, N 5.03.

trans-2,3-Dihydro-3-methyl-2-phenyl-4H-thiopyrano[2,3-b]pyridin-4-one (4d). Pale-yellow oil. $R_{\rm f}$ (AcOEt/hexane 1:5) 0.34. IR (neat): 1683, 1398. ¹H-NMR (500 MHz): 1.12 (d, J = 6.9, 3 H); 3.24–

3.31 (*m*, 1 H); 4.42 (*d*, J = 12.0, 1 H); 7.15 (*dd*, J = 8.0, 4.6, 1 H); 7.33–7.44 (*m*, 5 H); 8.30 (*dd*, J = 8.0, 1.7, 1 H); 8.56 (*dd*, J = 4.6, 1.7, 1 H). ¹³C-NMR (100 MHz): 12.86; 47.65; 50.34; 120.10; 126.67; 128.24; 128.55; 129.05; 136.96; 137.32; 153.70; 163.03; 196.14. EI-MS: 255 (100, M^+). Anal. calc. for C₁₅H₁₃NOS (255.33): C 70.56, H 5.13, N 5.49; found: C 70.39, H 5.27, N 5.26.

2,3-Dihydro-2-methyl-4H-thiopyrano[2,3-b]pyridin-4-one (**4e**). White solid. M.p. $64-66^{\circ}$ (hexane). IR (KBr): 1683, 1399. ¹H-NMR (500 MHz): 1.49 (*d*, *J* = 6.9, 3 H); 2.81 (*dd*, *J* = 16.0, 11.5, 1 H); 3.05 (*dd*, *J* = 16.0, 3.4, 1 H); 3.65 – 3.72 (*m*, 1 H); 7.13 (*dd*, *J* = 8.0, 4.6, 1 H); 8.29 (*dd*, *J* = 8.0, 2.3, 1 H); 8.55 (*dd*, *J* = 4.6, 2.3, 1 H). ¹³C-NMR (125 MHz): 20.38; 35.02; 46.68; 119.97; 126.84; 136.32; 153.75; 163.90; 194.33. EI-MS: 179 (100, *M*⁺). Anal. calc. for C₉H₉NOS (179.24): C 60.31, H 5.06, N 7.81; found: C 60.05, H 4.94, N 7.85.

2,3-Dihydro-2,2-dimethyl-4H-thiopyrano[2,3-b]pyridin-4-one (**4f**). White solid. M.p. 76–79° (hexane). IR (KBr): 1685, 1396. ¹H-NMR (500 MHz): 1.51 (*s*, 6 H); 2.91 (*s*, 2 H); 7.13 (*dd*, J = 8.0, 4.6, 1 H); 8.30 (*dd*, J = 8.0, 1.7, 1 H); 8.57 (*dd*, J = 4.6, 1.7, 1 H). ¹³C-NMR (125 MHz): 28.74; 43.73; 52.96; 119.78; 126.16; 136.10; 154.00; 163.79; 194.66. EI-MS: 193 (100, M^+). Anal. calc. for C₁₀H₁₁NOS (193.27): C 62.15, H 5.74, N 7.25; found: C 61.95, H 5.74, N 7.04.

2,3-Dihydro-2-phenyl-4H-thiopyrano[2,3-c]pyridin-4-one (**8a**). Yellow solid. M.p. $155-156^{\circ}$ (hexane/Et₂O). IR (KBr): 1688. ¹H-NMR (500 MHz): 3.26 (*dd*, J = 16.6, 2.9, 1 H); 3.36 (*dd*, J = 16.6, 13.1, 1 H); 4.75 (*dd*, J = 13.1, 2.9, 1 H); 7.35–7.44 (*m*, 5 H); 7.86 (*d*, J = 5.2, 1 H); 8.49 (*d*, J = 5.2, 1 H); 8.65 (*s*, 1 H). ¹³C-NMR (125 MHz): 45.54; 46.46; 120.68; 127.36; 128.80; 129.13; 135.05; 137.20; 137.63; 146.37; 149.31; 193.80. EI-MS: 241 (100, *M*⁺). Anal. calc. for C₁₄H₁₁NOS (241.31): C 69.68, H 4.59, N 5.80; found: C 69.68, H 4.75, N 5.78.

2,3-Dihydro-2-(4-methoxyphenyl)-4H-thiopyrano[2,3-c]pyridin-4-one (**8b**). Yellow solid. M.p. 131 – 133° (hexane). IR (KBr): 1685, 1613. ¹H-NMR (400 MHz): 3.23 (dd, J = 16.6, 2.9, 1 H); 3.33 (dd, J = 16.6, 13.2, 1 H); 3.82 (s, 3 H); 4.71 (dd, J = 13.2, 2.9, 1 H); 6.92 (d, J = 8.3, 2 H); 7.35 (d, J = 8.3, 2 H); 7.86 (d, J = 4.9, 1 H); 8.48 (d, J = 4.9, 1 H); 8.64 (s, 1 H). ¹³C-NMR (125 MHz): 45.01; 46.68; 55.32; 114.43; 120.67; 128.56; 129.59; 135.05; 137.38; 146.29; 149.29; 159.80; 194.01. EI-MS: 271 (100, M^+). Anal. calc. for C₁₅H₁₃NO₂S (271.33): C 66.40, H 4.83, N 5.16; found: C 66.30, H 5.05, N 5.10.

2,3-Dihydro-2-methyl-4H-thiopyrano[2,3-c]pyridin-4-one (8c). Pale-yellow oil. $R_{\rm f}$ (AcOEt/hexane 1:3) 0.33. IR (neat): 1694. ¹H-NMR (500 MHz): 1.49 (d, J = 6.9, 3 H); 2.81 (dd, J = 16.6, 11.5, 1 H); 3.07 (dd, J = 16.6, 2.9, 1 H); 3.65 – 3.72 (m, 1 H); 7.80 (d, J = 5.2, 1 H); 8.44 (d, J = 5.2, 1 H); 8.62 (s, 1 H). ¹³C-NMR (125 MHz): 20.38; 36.62; 47.51; 120.49; 134.97; 136.98; 146.05; 149.55; 193.96. EI-MS: 179 (100, M^+). Anal. calc. for C₉H₉NOS (179.24): C 60.31, H 5.06, N 7.81; found: C 60.22, H 5.10, N 7.75.

2,3-Dihydro-2-phenyl-4H-thiopyrano[3,2-c]pyridin-4-one (**12a**). Yellow oil. $R_{\rm f}$ (AcOEt/hexane, 1:3) 0.33. IR (neat): 1686. ¹H-NMR (500 MHz): 3.21 (*dd*, *J* = 16.6, 2.9, 1 H); 3.33 (*dd*, *J* = 16.6, 13.2, 1 H); 4.78 (*dd*, *J* = 13.2, 2.9, 1 H); 7.19 (*d*, *J* = 4.6, 1 H); 7.35 – 7.44 (*m*, 5 H); 8.46 (*d*, *J* = 4.6, 1 H); 9.18 (*s*, 1 H). ¹³C-NMR (125 MHz): 45.33; 46.01; 121.28; 125.28; 127.38; 128.86; 129.18; 137.38; 150.39; 152.08; 152.27; 193.45. EI-MS: 241 (100, M^+). Anal. calc. for C₁₄H₁₁NOS (241.31): C 69.68, H 4.59, N 5.80; found: C 69.43, H 4.83, N 5.81.

2-(4-Chlorophenyl)-2,3-dihydro-4H-thiopyrano[3,2-c]pyridin-4-one (**12b**). Yellow solid. M.p. 147–149° (hexane). IR (KBr): 1691. ¹H-NMR (500 MHz): 3.19 (dd, J = 16.0, 2.9, 1 H); 3.29 (dd, J = 16.0, 12.6, 1 H); 4.75 (dd, J = 12.6, 2.9, 1 H); 7.19 (d, J = 5.2, 1 H); 7.35 (d, J = 8.6, 2 H); 7.38 (d, J = 8.6, 2 H); 8.47 (d, J = 5.2, 1 H); 9.17 (s, 1 H). ¹³C-NMR (125 MHz): 44.62; 45.86; 121.26; 125.19; 128.75; 129.40; 134.78; 135.89; 150.42; 151.78; 152.21; 193.01. EI-MS: 275 (100, M^+). Anal. calc. for C₁₄H₁₀CINOS (275.75): C 60.98, H 3.66, N 5.08; found: C 60.99, H 3.69, N 5.02.

2,3-Dihydro-2-(4-methoxyphenyl)-4H-thiopyrano[3,2-c]pyridin-4-one (12c). Yellow solid. M.p. 130–132° (hexane). IR (KBr): 1685, 1610. ¹H-NMR (400 MHz): 3.19 (*dd*, J = 16.0, 2.9, 1 H); 3.31 (*dd*, J = 16.0, 12.7, 1 H); 3.83 (s, 3 H); 4.74 (*dd*, J = 12.7, 2.9, 1 H); 6.92 (*d*, J = 8.8, 2 H); 7.18 (*d*, J = 5.4, 1 H); 7.33 (*d*, J = 8.8, 2 H); 8.46 (*d*, J = 5.4, 1 H); 9.17 (s, 1 H). ¹³C-NMR (125 MHz): 44.78; 46.23; 55.30; 114.48; 121.22; 125.28; 128.59; 129.31; 150.37; 152.03; 152.43; 159.84; 193.67. EI-MS: 271 (100, M^+). Anal. calc. for C₁₅H₁₃NO₂S (271.33): C 66.40, H 4.83, N 5.16; found: C 66.30, H 4.83, N 5.11.

trans-2,3-Dihydro-3-methyl-2-phenyl-4H-thiopyrano[3,2-c]pyridin-4-one (**12d**). Pale-yellow solid. M.p. 160–162° (hexane/Et₂O). IR (KBr): 1678. ¹H-NMR (500 MHz): 1.12 (d, J = 6.9, 3 H); 3.29 (dq, J = 12.0, 6.9, 1 H); 4.43 (d, J = 12.0, 1 H); 7.12 (d, J = 5.2, 1 H); 7.32–7.42 (m, 5 H); 8.44 (d, J = 5.2, 1 H); 9.13 (*s*, 1 H). ¹³C-NMR (125 MHz): 12.62; 47.90; 51.38; 120.71; 125.12; 128.14; 128.78; 129.13; 137.00; 150.67; 151.34; 151.83; 195.66. EI-MS: 255 (100, M^+). Anal. calc. for C₁₅H₁₃NOS (255.33): C 70.56, H 5.13, N 5.49; found: C 70.46, H 5.28, N 5.57.

2,3-Dihydro-2-methyl-4H-thiopyrano[3,2-c]pyridin-4-one (**12e**). Pale-yellow oil. $R_{\rm f}$ (AcOEt/hexane 1:2) 0.38. IR (neat): 1686. ¹H-NMR (500 MHz): 1.48 (d, J = 6.9, 3 H); 2.78 (dd, J = 16.0, 10.9, 1 H); 3.04 (dd, J = 16.0, 2.9, 1 H); 3.66-3.73 (m, 1 H); 7.16 (d, J = 5.2, 1 H); 8.42 (d, J = 5.2, 1 H); 9.11 (s, 1 H). ¹³C-NMR (125 MHz): 20.36; 36.40; 46.94; 121.61; 125.25; 150.11; 151.87; 152.07; 193.63. EI-MS: 179 (100, M^+). Anal. calc. for C₉H₉NOS (179.24): C 60.31, H 5.06, N 7.81; found: C 60.15, H 5.05, N 7.73.

2,3-Dihydro-2,2-dimethyl-4H-thiopyrano[3,2-c]pyridin-4-one (**12f**). Pale-yellow oil. $R_{\rm f}$ (AcOEt/hexane 1:2) 0.30. IR (neat): 1686. ¹H-NMR (500 MHz): 1.50 (*s*, 6 H); 2.89 (*s*, 2 H); 7.14 (*d*, J = 5.2, 1 H); 8.44 (*d*, J = 5.2, 1 H); 9.13 (*s*, 1 H). ¹³C-NMR (125 MHz): 28.61; 45.43; 53.15; 121.70; 124.56; 149.88; 151.70; 152.06; 194.03. EI-MS: 193 (100, M^+). Anal. calc. for C₁₀H₁₁NOS (193.27): C 62.15, H 5.74, N 7.25; found: C 62.16, H 5.70, N 7.11.

We thank Mrs. *Miyuki Tanmatsu* of our university for recording mass spectra and performing combustion analyses.

REFERENCES

- A. Da Settimo, A. M. Marini, G. Primofiore, F. Da Settimo, S. Salerno, F. Simorini, G. Pardi, C. La Motta, D. Bertini, *J. Heterocycl. Chem.* 2002, *39*, 1001; G. Primofiore, A. M. Marini, F. Da Settimo, S. Salerno, D. Bertini, L. Dalla Via, S. Magno, *J. Heterocycl. Chem.* 2003, *40*, 783.
- [2] F. Da Settimo, G. Primofiore, C. La Motta, S. Salerno, E. Novellino, G. Greco, A. Lavecchia, S. Laneri, E. Boldrini, *Bioorg. Med. Chem.* 2005, 13, 491; Z. Ma, W. Tan, B. Fang, G. Wang, L. Li, C. Yang, L. Bai, G. Yang, PCT Int. Appl. WO 2010121487, 2010; *Chem. Abstr.* 2010, 153, 530264.
- [3] A. Da Settimo, A. M. Marini, G. Primofiore, F. Da Settimo, S. Salerno, C. La Motta, G. Pardi, P. L. Ferrarini, C. Mori, J. Heterocycl. Chem. 2000, 37, 379.
- [4] P. Gaillard, I. Jeanclaude-Etter, V. Pomel, E. Sebille, S. Jeyaprakashnarayanan, M. Muzarelle, PCT Int. Appl. WO 2011121487, 2011; *Chem. Abstr.* 2011, 154, 588907.
- [5] G. W. Gribble, M. G. Saulnier, Tetrahedron Lett. 1980, 21, 4137.
- [6] a) F. Trecourt, F. Marsais, Q. G. Timur, J. Chem. Soc., Perkin Trans. 1 1990, 2409; b) K. Kobayashi, T. Suzuki, M. Horiuchi, Y. Shiroyama, H. Konishi, Synthesis 2011, 2897.
- [7] B. Movassagh, A. Rakhshani, *Chin. Chem. Lett.* **2011**, *22*, 1179.

Received September 26, 2012